Mubeen

Pythagorean theorem

 | math

Pythagorean theorem: if â–³ABC\triangle ABC is right at AA then:

AB2+AC2=BC2AB^2 + AC^2 = BC^2

Figure1: sum of areas of the two squares equals the area of the hypotenuse square.

Area of a circle:

Area(r)=∬D1 d(x,y)=∬Dt dt dθ=∫0r∫02πt dθ dt=∫0r[tθ]02πdt=∫0r2πtdt\begin{aligned} \mathrm{Area}(r) &{}= \iint_D 1\ d(x, y)\\ &{} = \iint_D t\ dt\ d\theta\\ &{} = \int_0^r \int_0^{2\pi} t\ d\theta\ dt\\ &{} = \int_0^r \left[ t\theta \right]_{0}^{2\pi} dt\\ &{}= \int_0^{r} 2 \pi t \, dt \\ \end{aligned}